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ABSTRACT. The purpose of this paper is to provide a proof for a Fundamental Principle
for convolution equationg  f = 0, with u € £'(Q) andf € D'(Q), whereQ2 C R™ is
a convex open set arfll (Q2), D’ () are the corresponding distribution spaces.

1. Introduction and Notations

The Fundamental Principle of L. Ehrenpreis, [3], is a sophisticated extension of the clas-
sical Fundamental Principle of Euler, which shows how to write every smooth solution of
a linear constant coefficient O.D.E, as the sum of its “elementary” exponential polynomial
solutions. Ehrenpreis’ result, on the other hand, deals with the case of solutions to systems
of linear constant coefficients P.D.E.’s, in a variety of spaces of “generalized functions”,
which he calls Analytically Uniform Spacesl{/-spaces). Among the main examples of
Analytically Uniform Spaces (see Chapter V of [3]), we just mention the sgaufanfin-
itely differential functions, the spaa® of holomorphic functions and the spab® of the
Schwartz distributions.
Ehrenpreis’ Theorem is a consequence of the following refined version of the well known
Hilbert's Nullstellensatz:

(1.1) Theorem (3]) — Let Pi(z),..., P.(2) be r polynomials in n complex variables,
and let I = I(P) be the ideal which they generate.
Denote by

V={zeC"|P(z)=---=P(2)=0}
the variety of common zeroes.
Then there exist subvarieties Vi,...,Vs of V and differential operators 01, ...,0s on

these same varieties, such that a polynomial () belong to the ideal I if and only if, for
any j =1,...,s, the polynomial 0;() vanishes on V;.

We can therefore state
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(1.2) Theorem (Fundamental Principle of Ehrenpreis)— Let

let f be an infinitely differentiable function and maintain the notation as in theorem (1.1).
The function f is a solution of

if and only if it admits an integral representation

f@)= % [ oy(exnimia-2))ny(a).

1<j<r
where the dv;’s are Borel Measures, and

T-2Z2=x121+ -+ Tnzn -

As it is well know, convolution operators are the most general continuous operators which
are invariant by translations, and so it has been quite natural to attempt to generalize Ehren-
preis’ Principle to the case of (systems of) convolution equations in various spaces. Many
results are known in this direction; among them we recall the following cases, which have
already been explored:

e The spac&@(C™) or O(£2) of holomorphic functions of£™ or on an open convex
setQ in C" (see [9)]).

e The space£ (R™) or £(Q2) of infinitely differentiable functions ofR™ or on an
open convex st in R™,

e The spacé&,, of ultradifferentiable functions in the sense of Beurling.

e The spacé,, of ultradistributions in the sense of Beurling.

e The spacé@ of hyperfunctions.

So far, however, no detailed proof has ever been given for a Fundamental Principle for
convolution equations

pxf=0,

with € £'(Q2) andf € D'(Q), whereQ) is a convex open set R™ and&’ (), D’'(12) are
the corresponding distribution spaces.
The purpose of this paper is to provide this proof.
More specifically, we shall consider “systems” of convolution equations of the form
(1) :U/*f:(/’él*f?7u'f*f):05
wherepuy, ..., u € E'(R™),1 <r <nandf € D'(R"), so that

px: D — ('D')T .
Finding solutions of (1) is equivalent to study the kernel of the opegator

In particular, one would like to give an integral representatiofi,tvhose frequencies are
contained in the variety

V={zeC"u(z)="=M(2)=0}CC",
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wherefi; denotes the Fourier transform of the compactely supported distribufiand is
defined by

fj(z) =< p;, ¢ — exp(iz - ¢) > .
We will show that such representation indeed exists, a fact which is equivalent to show a
sort of Fundamental Principle for such equations.
More precisely, we will prove
2) ker () ~ (D(V))',
whereD(V) is a space of holomorphic functions ®hsatisfying suitable growth condi-
tions. This space will be defined in the sequel (theorem (4.3)).
In order to prove isomorphism (2), one recalls, from functional analysis, that

ker(ux) ~ D/I,

wherel is the non principal ideal generated Gy, . . ., fi) in D.
To complete the proof of the Fundamental Principle, it will be therefore sufficient to show
D/I~D(V).

The proof relies on two theorems (a division one and an extension one) which we will
prove in the next two sections.

2. Division Theorems

Let us consider the system of convolution equations

pxf=0,
with g = (p1,..., ) € (E'(R™))" andf € D'(R™).
Let
V={zeC"|ju(z)==jm(2) =0} and Vi={z€C"|u(z) =0},
and define

d(z,V;) = min(1, distance fronx to V;) .

(2.1) Definition — p = (p1,...,ps) is aid to be slowly decreasingif the following
conditions hold:

(i) foranye > 0, there exist positive constants A, B such that the connected compo-
nents of the set

S(p; A,Be) ={zeC"|fori=1,...,n,d(z,V;) < A(1 + |z]) "B exp(—¢|Im(2)|) }

are relatively compact and their diameters are uniformely bounded;
(ii) there exist positive constants C, D, F' and m such that, for all z € C" and i =
1,...,n,

i(2)] = C(1+ |2[)~Pd(z, Vi)™ exp(F [Im z|)
and

A(z)] > C(L+[2])~Pd(z, V)™ exp(F |im 2]) .



4 ADELINA FABIANO

A key tool in what follows is the so called Jacobi’s interpolation formula, [2], whose con-
struction we now briefly recall.
Letg = (¢1,- .., 9n) be analytic functions such that the variety

V={z€C"|gi(s) = - = ga(2) = 0}
is discrete and le® = Q(=) be a bounded component of the analytic polyhedron
Ple)={zeC"|fori=1,...,n,|9:(2)| <& },

wheres = (e1,...,&,) is chosen so thaP(¢) is nondegenerate.
Then, for all choices of <i; < -+ < i < n, we have

dgi, N---Ndg;, #0,

on those points of the boundary 8f¢) where|g;,| = ¢;, forl = 1,...,k and|g;| < &;
fori ¢ {i1,... ik}
Let

P={zedQlfori=1,...,n,|g:(2)| =¢; }.

Suppose that the jacobian @¢hever vanishes oW. o
It is well known, [2], that it is always possible to choose analytic functi@pson Q2 x
such that

9:(C) —gi(z) = Y Qij(¢,2) (G —2) for  di=1,....n.
1<j<n
Let
H(¢, z) = Det[Q4;(¢, 2)] -
Now, for A € O(€2), we construct the Jacobi interpolation formula as
a1 MO H(C,2)dG A= -+ A dG,
NG = 1055) = g | S

With respect to this formula, the following results hold [2].
(2.1) Proposition— If A € O(2), then

() A(z) = (JN(2) = Xo1<icn ai(2)gi(2), witha; € O() fori =1,...,n;
(i) IfX e I@(ﬁ)(gh ...y 0n), then (JA)(z) = 0 for any z € Q.
(2.1) Theorem— Let

S={zeQlfori=1,...,n,]gz)| < =

and take
reo®@ T=00 n=]] a-.

Assume the following bounds hold
(i) [Az)| < M onQ;

(i) [H(2,¢)|<DonQxS;

(i) fp|d¢i A~ AdCa] < L;
(V) 19i(¢)| < Dy on Q.
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Then

on S .

Moreover, if
Az) = f1(2)91(2) + - + fu(2)gn(2)
for some fi, ..., f, € O(), then it is possible to find oy, . . ., o, € O(Q) such that

A2) = () (2) + -+ an(2)gn(z)  on  Q

with .
CDMLD}Y™
loi(2)| < ———2A— on S,
n
where the constant C' depends only on n.
This result gives us a (semilocal) control on the growth of holomorphic functions. Its
proof is based on the Jacobi interpolation formula which holds only for discrete varieties
(we will see how to deal with the non discrete case in the sequel). The next result provides
the connection between semilocal and global.

(2.2) Theorem— Let & > 0 be sufficiently small and let A € O(S(ji; A, B, €)).
Suppose that, for any By > 0, there exist A, Cy > 0 such that

IN2)| < A1 (1 + |2]) 7B exp(Cy [Tm(2)]) for z € 8(j1;A,B,e) .

o)
Then there exists an entire function A € O(C™) such that for any By > 0, exist Az, Cy >
0, with

0]
A(z)| < Ao (1 +|2]) P2 exp(Ca [Im 2]) for zeC”
and there exists analytic functions o, . . . o, such that
)
A2)=A2)+ Y ail2)ifi(z)  for  z€S8(iz A B,2%)
1<i<r

and such that for any Bs > 0 exist Az, C3 > 0 with
| (2)| < As(1+|2]) P8 exp(C5 [Im 2]) for z e S'(fi; A, B, 2¢) .

Proof —Fori=1,...,r,forj =1,...,nandforz € C", one has
Ofi(z)
aZj

< A(1+2])® exp(C [Imz|) .

0]
For the definition ofS(ji; A, B, ), we can find positive constants, A’, B’ such that the
¢}
distance fromS’(ji; A, B, 2¢) to the complement of (ji; A, B, ¢) is at least
A'(1+ |2) 75 exp(—¢ [Im z]) .

Consider the functiory € C>°(C™) such tha < y < 1andy = 1onS’'(j; 4, B, 2¢),
x = 0 on a neighborhood of the complement<{fi; A, B, ). Moreover, for somed” >
0, one has

|ox(2)| < A"(1 + |z))~F exp(—¢[Imz|) .
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Theny + A € C>(C") and, ifw = X x Oy, on has thaw € {7 ,,(C") is ad-closed form
which vanishes in a neighborhood 6f Moreover there is an integet such that

/ lw(2)[? i(2)| > exp(—me [Tm 2| — 2F [Im z|) dz < 400 .
(Cn

This immediately follows from the bounds @f By following [5] one has that, fom
sufficiently large, there exigl-closed(0, 1)-formswy, . .., w, such that

W= wifly + -+ Wefly
Moreover, from the construction of the;’s one has

/ |wj(z)|2 |(z)|** exp(—ke [Im z| — 2F" [Im 2|) dz < +o0

for some integet: and somé” > 0. The usuab-techniques show that there exist analytic
functionsay, . . ., a,- such that

o
1<i<r

and such that, for somé, > 0 one has
!
/ i (2)] |(2)| " exp(—2F" [Im z| — 240 log(1 + |2[)) dz < +o0
s

forl = m — 2(2n + 1). Therefore, ift > 0, one deduces from [4] that the mean value
of |a;| on the balls
{CeC|[¢—2[<1}
is bounded by B
A1+ |z|)_B exp(F” |Tm z|) ,
for some constantd, B > 0, a fact which proves the theorem. Let us state Ehrenpreis’
Division Theorem forAU-spaces.

(2.3) Theorem— Let Py, ..., P, be polynomials in C" and let ' € X for X any AU-
space, and where denotes a Fourier transform on X'. If there exist A1, ..., A, € O(C"™)
such that

F:)\IP1+"'+)\TPT7

o o R
the one can find A1, ..., A\, € X such that
o

]
F=MNP+---+ MNP .

We now improve this result.
(2.4) Theorem (Division)— Let F' € D(R™) and let ji = (fi1,...,[in) € (5’(]1%”))” be
slowly decreasing. If there are entire functions f1, ..., f, such that for any z € C"
F(z) = fi(2)fn(z) + - + fa(2)in(2),
then one can find functions 1, . . ., v, € D(R™) such that

3) F(z) =m(2)i(z) + -+ m(2)fin(2) -
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Proof — Sinceyi is slowly decreasing, one can chooseB, ¢ so that the sef (ji; A, B, ¢)
has relatively compact connected components.{Lstich a component, and [Et= 02
be its boundary. In order to apply teorem (2.1), one notices that:

(i) F € D(R™) and therefore for any3; > 0, exist 4;,C; > 0 such that, for
al z e C”,

|F(2)] < Ai(1+|2)~ exp(Cy [Imz|) < M ;

(if) because of theorem (2.2) one has the functigRg(¢, z), and therefored (¢, z)
can be chosen i&é’(R™) and there existls, Bo, C> > 0 such that

|H(, 2)| §A2(1—|—|z|)32 exp(C'2 \Imz\) <D on O x {0} ;
(iii) we have
FC{zeC"|d(zV;) <A1 +|z[)~ P exp(—e|Imz|) }
and therefore there are constadts B;, Cs; > 0 such that, for alk € Q,
/ dGy A+ AdGa| < As(L+|2])P% exp(Cs [Im2]) < L ;
Iy
(iv) fi; € &'(R™) and so existdy, By, Cy > 0, such that, for alt € Q one has

|1:(C)] < Ag(1+ |2])P* exp(Cy [Im 2]) < Dy .

Let now
n=As(1+ |2])P* exp(Cs [Imz|) .
Thenthe are\q, ..., A, € O(Q) such that, for alk € 2, one has

F(z) = M(2)in(2) + -+ 4 An(2)fin(2)
o
and, for a constant’ depending only om, one has

o
- EDMLD} ™

RO
If we now set
° o n—1
@) A= F AlA?jz)(f") >0
@) B = Byt Byt (n—1)Bi—2B5>0
3) C = Ci+Ch+Cs+(n—1)Cs—2Cs5 >0
one has

o ] o
INi(2)] < A(1+ [2))B =B exp(C [Im 2])
o O
and so, for anyB, existA, C' > 0 such that

o O
Ni(2)] < AL+ |2))P* exp(C [Im 2]) .
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This implies that\; € D(Q2),i=1,...,n.
This argument can be repeated on every connected component, but we are interested to ex-
tend the representation (3) to @f'. For this purpose, consider the characteristic function
|1 aif ze8
X(Z){ 0 if z¢S
and replace\; with
o Fji;
Ai =xAi+ (1= X)7=77 5
llal?
where
AP = [ + - + |l
Then

=

Z )\?ﬂiz Z XAifti + Z (1—X)F i%i:XF‘F(l_X)F:F'

1<i<n 1<i<n 1<i<n

=

[e] [e] [e]
Therefore (see [2]\1,..., A, € C°(C™), A\|s = Aand

e
NG| < A+ D2 ) exp(C =)

Moreover,
)

[e]
F(z) = M(2)i1(z) + -+ + An(2)fin(2)
and then
_ © _ O
oM+ -+ 0N 1, =0.
Finally (see theorem (4.2)), this yields functionse D(R"™) such that
F =i+ 4 ymfin -

(2.1) Remark— An analogous result has been proved by Berenstein-Taylor in [2] for the
caseF € &'(R™). They proved, indeed, that is possible to determine same &'(R™)
such that

(4) F(z) = M(2)f(2) + -+ An(2) fin(2) -

AlthoughD C &', the two results are not directly comparable, because both the thesis
and the hypothesis of theorem (2.2) are “stronger” than (4). Let Kow , 7" be compact
convex subsets d&", with K = K + 7.

(2.2) Definition— 1 = (g1, ..., fin) € (5’(T))" is T-slowly decreasingif the following
conditions are satisfied:

(i) for any € > 0, there exist positive constants A, B such that the connected com-
ponents of the set S(ji; A, B, ) are relatively compact with uniformely bounded
diameters;

(ii) there exist positive constants C', D and m such that, for all z € C" and i =
1,...,n,

15 (2)] = C(1 + |Z|)7Dd(2, Vi)™ eXp(HT(Imz))

and
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(z)] = C(1 + |2])Pd(z, V)™ exp(Hr(Imz)) ,
where Hr denotes the support function of T'.

(2.1) Corollary — Let K, K, T be as above. Let F € D(K) and ji € (£'(T))" be T-
slowly decreasing.

Then, if there exist entire functions f1, ..., f, € O(C") such that
F(z) = fi(z)in(z) + -+ fafin(z)  for  zeC",
it is possible to find entire functions A1, . .., A, € D(K.) such that

F(z) = (2)f1(z) + -+ Afin(2) for zeC™.

The proof of this corollary is similar to that of theorem (2.4) by replacing its constants with
the following

M = A+ |z|)_B/ exp(Hp(Imz))
D = A'(1+]z)~ P exp(Hpr(Im 2))
L = Ai(1+]2])" exp(e|Imz])
Dy = A(1+ |z)B exp(Hr(Imz) — & [Im 2|)
n = A(l+|z]) P exp(Hyr(Imz) — nme [Im ) .

3. Extension Theorems

We now describe the main ideas which are needed to generalize our division theorem to
the non discrete case and, at the same time, to prove a general extension theorem.
As we already mentioned, the Jacobi interpolation formula (and therefore theorem (2.1))
only hold for a discrete variety. Therefore, if we want to study the ideal generated by
1. fe 1 <r<mn, g €& (R™),we need to reduce the problem to a discrete situation
asin[1, 2, 8]. The idea consist in “cutting” the (complete intersection) variety

V={zeC"ju(z) = = ur(z) = 0}

with a family £ = {L} of complexr-dimensional affine spaces, in order to be able to apply
the Jacobi interpolation formula to each “section”. Some conditions have to be imposed on
the family £ and on the behaviour of thg's on L itself. Such conditions are summarized

by the following definitions:

(3.1) Definition — Let p1, ..., u- € E'(R™) have compact support K C R™. We say
that p = (p1,..., () is K-slowly decreasingif there exists a family L = {L} of r-
dimensional complex affine spaces, which cover C", such that, for suitable positive con-
stants C, D, F,m > 0, forany L € L and any z € L one has

i (2)| > C(1+ |2)Pd(z, V; N L)™ exp(F [Im 2|)

fiz)| > C(1+ |2[)~Pd(2,V N L)™ exp(F [Imz|) .

Moreover, for any € > 0, there exist constant A, B > 0 such that, for all L € L, the sets
Or(ii;A,B,e)={ze L|fori=1,...,r,d(z,V;) < Al +|z|)~8 exp(—&: \Imz|) }
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have relatively compact connected components with uniform bounded diameters.

LetL € L, ¢, A, B be fixed so that every connected compor@rdf Oy, (ji; A, B, ¢) has a
diameter bounded by a fixed constant. An operiséet C" is said to begood if, for some
positive constanta, 3, it is of the type

Q={zeC"|exist¢with [z — ¢| < a1 + [¢]) P exp(—F [Imz) } .

If we fix i1, L,e, A, B, o, 3, F', we obtain agood family of sets, which we indicate hg.
Finally, agood refinement C' of C is a good family obtained by decreasidgand« and
by increasingB, 3, ¢, F'. Note that for every good refinemed@tt of C, is defined a natural
refinement map

p:C —C.

(3.2) Definition — The family L is said almost parallel if, given a good family C, there
exists a refinement C' of C such that, if 9,y € C’, one has

QoNQy # h = QU C p(Qo) ﬂp(Ql) .

(3.3) Definition — The family L is said analytic if there is a good family C' associated
with £ with the following property: given ) € C associated with the spaces L € L, there
exist local analytic coordinates (s,t) on €2 such that

Qn{(s,t):t=0}=QNL
and
QN{(s,t):t=const} =QNL; forsome L;€L.

By applying the Jacobi formula to these discrete intersections we obtain local extensions,
which we now need to patch-up toghether. To this purpose, it becomes indispensable to
use the Koszul complex, which we briefly recall.

Denote with.A’ the space of analytig-cochains defined with respect to a good fandily

and which satisfy the growth conditions &f this means thay € A’ if and only if v is an
alternating function

v:Ctt — Div()(E(Q NN Q)
(Qo,..-,Q2) > for,..., fos €O N -+ N Q)
such that
|fo1(2),..., fos(2)| < A1+ |z\)Bexp(A|Imz|) for Z2€QyN---NQy,

with A, B > 0 which depends only on.
Define now two operators.
Let s be an integer such that< s < r, letq =0,1,2,... and set

A = A°(C) ® AT
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The family (A7) defines the following double complex

1 l
— Af] L A;Jrl —
P | P
— A7y R AZL —
1 !
In the diagramy is the coboundary operator associated with a family of sets, whike
the Koszul operator associated with the indeand the functiongy, .. ., u,., defined as
follows

P: Ay — Ay,
w=w{ +— Pw)=PWk= Y Wik
1<i<r
with |J| = s,|I| = ¢, | K| =q— 1.

We refer the reader to [2] for further details on this double complex. We now state a
theorem from [6] which we will need in the sequel.

(3.1) Theorem— Let C be a good family. Let w € A5 (C) be such that §(w) = 0. Then
there are a good refinement C' of C and 1 € A3 (C’) such that p(w) = 6(n).

(3.2) Theorem— Let C be a good family and let { L} be an almost parallel family.
(i) Let ¢ > 1,s > 0. Then there exists a good refinement C' of C such that, for
any w € A3(C), one has P(w) = 0; there exists also n € Aj,;(C’) such
that p(w) = P(n).
Moreover, if for some A, B > 0 and for any N > 0, we have
lwi(2)] < A1+ |2))~N exp(B [Imz]),

(] (]
ie. w; € D(R™) for any i, the one can choose 1 so that, forsome A, B > 0 and
[e]

for any N > 0 which depends on A, B, N and pi, one has

(¢]

n(2)] < A1+ [2)~N exp(B |Im2) .

(i) Lets > 0,q = 0. Then there exists a good refinement C' of C such that, for
allw = (w') € A;(C) with the property that ' belongs to the ideal generated
by fir, ..., fir in O(Qy, N -+ N Qy,), Qj, € C, there exists ) € A;(C') such that

p(w) = P(n) .
Finally, for N > 0, there exist A, B > 0 such that
lwi(2)] < A1+ |z|)_N eXp(B |Imz|) ,

(] O o
one can also choose 7 such that, for any N > 0, there exist A, B > 0, we have

o o ¢}
n(z)] < A1+ |2))~" exp(B [Im z]) .
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Proof — It can be shown (see [2]) that this theorem follows if we can prove itfer 0.

Its proof is partially contained in theorem (5.3) of [2], with the exception of the bounds.
Let us straighten up this point.

Suppose, firsty = 0. Thenw € A$(C) determines an analytic functior{z) on each open
set() € C with

(5) IMNz)| < AL+ |z))7N exp(B |Imz|) )
Since, by hypothesis\ € 1o q)(fi1, - -, fir), (5) follows from theorem (2.1) (local inter-
polation). From the definition of “good open sets”, one has

A(z) = Z i(z)fui(z)

1<i<r
for a; € O(Y), with @ C Q andQY’ € C’, a good refinement af such that
lai(2)] < A'(1+ |z\)_N/ exp(B'[Imz]) .

Consider now the case¢ = 1 (for ¢ > 2, see [2] with the necessary modifications).
Let e,...,e. be a basis for\!(C") and letw € AY(C). On each open sét € C,
one has

W =wie] + -+ W€y,
with w; € O(Q). But P(w) = 0 means that

wlﬂlJr"'errﬂr:Oa

that is (under the hypothesis oadim(V)) w1 € To)(fi1, - - fir)-
Therefore, from the casg= 0, there ar&’ and
o]

n =1mez+ - +nee. € A(C)

such that
Wi = Mo + N fhy
Moreover, if
wi(z)] < AL+ |z]) N exp(B [Im z]),
then also

[} o o ¢}
‘77(2) < A(1+|z])"N exp(B [Imz]) .
Definen := —e; A; € AJ(C’) and sety = w — P(n). Then
7 =0 P(y)=0
i(2)] < AL+ [2]) "V exp(B[Im z]) .
Repeating this proceducé, 1)-times, we prove the theorem.

(3.3) Theorem— Let n = (p1, - - ., pirr) be slowly decreasing with respect to an analytic
almost parallel family L. Let V' be the multiplicity variety associated with (.
V={zeC"|i(z)==f(2)=0}

and let \ be analyticon V, A € O(V).
Suppose that, for any N > 0, there are constants A, B > 0 and, for any L. € L, there is a
o

function \;, analytic on L, which verifies the following conditions:
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O
A (2)| < AL+ |2]) N exp(B [Imz|) forz € L;

0

o
(i) the restriction (with multiplicity) of A1, to V N L equals the restricion of A to VN L,
ie.

(0]
Arlvar = Alvar -

[¢]
Then there exists an entire function A € O(C™) such that its restriction to V coincides
with A\, A\|y; = X and which satisfies, for some A’, B’ > 0 and any N’ > 0

o !
’/\(z) <A1+ 2])N exp(B'|Imz|) for zeC™.

Proof — LetC be a good family of sets: consid@re C associated with spade € £ and
a component of O (fi; A, B, ). Fix { € G, then, for anyz € G, one has

A1+ 1z2]) Pexp(e|mz]) < A (1+1[¢]) P exp(e|Imz]) = 4o .
Choose local coordinates= (s, t) on(2, centered af, so that
L={(s,t):t=0}.

Sincej: and its derivatives satisfy

(2)] < Ar(L+ [2]) Pt exp(By [Im )
by the mean value theorem, an by a suitable choiae 6f> 0, one has that, if

7 =a(1+|¢) 7 exp(e|tmz]),
then
|z —w| <27 = |u(z) — p(w)| <o for z€G and we.
Choose nowd’, B, ¢, o/, ' so that a good refinement
p:C —C,

associated with these constants, satisfies the following condition:

QA C{z=(s,t):t|]<T,5s€Gs} CQ
for

G,={zeG|fori=1,...,r,d(z,V;NL<o0)}.

By using the local interpolation formula, and by its analytical dependency on parameters,
we can define a functiof/ \)(s, t) which is analytic orfY’, satisfies the growth conditions
of D
(IN(E)] < AQ+ [2) 7 exp(B|Im 2])
and coincides withh on V' N Q.
In this way, we construct a collection i\ which determines an elementitf(C’), which
we indicate withy. Setw = () and letQ, Q; be inC’; w defines, on their intersection,
an analytic function

wo,1(2) = (JA)o(2) = (JA)1(2),



14 ADELINA FABIANO

where (J));, i = 0,1, indicates the restriction af A to Q}; wo 1 satisfies the growth
condition ofD:

|wo1(z)] < A1+ E exp(B |Imz|) .
Moreoverwg 1 € I(f1,. .., fir) ONQH N QY.
As §(w) = 0, by theorem (3.2), there exist a good refinem@hof C’ andn € A}(C")
with P(n) = p(w).
Moreover

[0(2)] < AL+ [2)™" exp(B [Im 2]) .

Again by theorem (3.2), there exist a good refinent®fof C” andd € AJ(C""), satisfy-
ing the same growth conditions assuch that (6) = p(n).
We finally define a global analytic function belongingdy

o
v :=p(y) = P(9) .
This definition is well posed, since

5(7) = 3(p(7)) = 6(P(9)) = p(3(7)) — P(3(80)) = p(w) — P(5(8)) = 0.
Now, by the theorem (2.2), we conclude the proof.

(3.1) Remark— Theorem (4.3) give, implicitely a “description” @(V"). We now con-
clude this paper with the representation theorem, whose proof follows immediately from
the previous theorems.

(3.4) Theorem (Representationy— Suppose that i1, ..., € E'(R™) are slowly de-
creasing compactly supported distributions and let f € D. Then f is a solution of

pxf=-=pxf=0
if and only if there exists a finite partition Jj, of indexes such that

f(z) = Z( Z / 9; (exp(—iz - 2)) duj(z)> ,
keN Njed,, 7 Vi
where {V; : j € J} is a locally finite family of closed sets, the 0;’s are differential
operators on V; and the dv;’ are Borel measures.

Let us finally suppose thgt € D’ (Q + K), with Q C R™ an open convex set arid C R"

a compact convex set. If the supportaf . . ., i, is contained inK, then the same results
previously obtained for the equatign« f = 0. But more is necessary as far as the bounds
are concerned, because the structure of the weights which de®X(idet- K') andD’(2)

is more delicate that the one Df (R™). As a consequence, stronger restrictions orjithe
will be needed by introducing the support function&n
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